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Complex potentials with logarithmic singularities in their kernels are constructed for elastic bodies with a defect along a smooth 
arc. Muskhelishvili's conjugation is used to obtain singular integral equations of the principal boundary-value problems of plane 
elasticity theory. Examples are considered. Numerical solutions of the integral equations are obtained by the Bubnov-Galerkin 
method. © 2000 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose an elastic medium fills a plane simply connected region D + bounded by a closed line L with 
a defect (a cut or thin inclusion) along a smooth open arc ab: the region D-  added to D + completes 
the plane. 

According to the Kolosov-Muskhelishvili formulae [1, Section 32], when there are no volume forces, 
the stresses and displacements can be expressed by two functions (complex potentials) that are analytical 
in the region considered. According to the principles of the mathematical crack theory, constructed by 
Panasyuk, Savruk and others (see, for example, [2]), the complex potentials for an elastic body with a 
defect along the arc clb will be functions ~(.) and ~( .)  that are analytical in the region D + of the complex 
plane with a cut, the limiting values of which on ab satisfy the conditions prescribing the abrupt changes 
in stresses and disp]lacements 

[k  m-  ]'q0(t) + (-1)"'-I (tcp'(t) + ~(t))] + - [k"-Iq0(t) + (-I)  "-j  (t~'(t) + ~(t))]- = 

= (k+ l )S  Um(X)d~, t~ab  (1.1) 
(ll  

where k > 0 is a certain real constant [k = 3-4ix in the case of plane strain, or k = (3 - Ix)/(1 + Ix) in 
the case of a genera]Lized plane stressed state, where Ix is Poisson's ratio] and Um(') (m = 1, 2) are certain 
functions defined on ab, where 

S u,,(x)dx = 0 (1.2) 

We shall assume lhat the functions urn(') satisfy H61der's condition on any part of the arc abthat does 
not contain ends, and at points a and b they may have singularities of integrable order (they belong to 
Muskhelishvili class H*). 

In deriving expressions for the complex potentials, we shall use the rational functionz = to(E), which 
conformally maps the unit circle A + with a cut along a smooth arc ~[3 onto region D + with a cut along 
the smooth arc ab. In this case, let the exterior of the circle A- pass into region D- ,  the unit circumference 
Apass into the line L, and let the directions of circumvention on L and A be selected so that the region 
D*(D- )  is positioned to the left (right) of L in the plane of the complex variable z, and the region A + 
(A-) is positioned to the left (right) of A in the plane of the variable ~. 
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Suppose the 
continuously 
region L. 

2. C O M P L E X  P O T E N T I A L S  FOR E L A S T I C  SOLI DS  
W I T H  A D E F E C T  A L O N G  A S M O O T H  ARC 

functions considered are analytical in regions cut along ab and are continued 
at all points of the arc, apart, perhaps, from its ends, and at the boundary of 

Lemma. If the limiting values of the functions ~p(.), t~(.), analytical in region D ÷ cut along the arc ab, 
satisfy the condition 

q)+(t)+t~p'+(t)+~ll+(t)=O, te  L (2.1) 

and conditions (1.1), (1.2), then 

q~(o~(~)) = q0~ (o~(~)) + ¢o(;), 

where 

~¢(o~(;)) = ~¢, (o~(~)) + %(~) (2.2) 

tpt(z)=~-~ni,, U,(z)~,t, ~ - z d x  (2.3) 

I !Ul('~)~dz 1 !b = - -  + v- I , a  
gtj(z) -2rti , ,  x - z  2hi, ~t, 

U~(~)=u,(x)+u2(x), U2(x)=kul('O-Uz(X) 

coo / ~) 
+°(~)=F(~) '  W°(~)=-F(I]~) ~ ( ' 6  F'(~), ~eA + 

(2.4) 

and F(.) is the solution of the discontinuity problem 

F+(z) - F-(I:) =-f(o3(x)), "~ e A, f( t)  = cp~(t)+t~p~+(t)+ ~ ( t ) ,  t E L (2.5) 

Proof. It can be verified that the functions ¢1(') and ~1(') satisfy conditions (1.1) and (1.2) [3]. Then, the functions 
@0(~) = q~(o(~)) - qh(°~(~)), q%(~) = t~(o~(~) ) - 61(~o(+~)) have no singularities on the arc c~13. The limiting values 
on A of the functions @0(') and ~0('), analytical in A , satisfy the condition 

co (~) 

We shall use Meskhelishvili's conjugation method [1]. Consider the auxiliary function 

F(~)={ ¢° (~) '~A+:  - o)'(11~)c°(~)¢°(1/~)-~°(I/~)' ~ A - }  

analytical in A ÷ and A- and continued continuously on A to the left and right. Its limiting values on A satisfy 
condition (2.5) (1/~ = r on A). It is obvious that oJ'(~), 0 V~ e A ÷ and to'('r) ¢ 0 VT e A if the contour A has a 
continuously changing curvature [1, Section 47]. 

A solution of discontinuity problem (2.5) will be sought in the class of functions that can have 
poles at the point at infinity and at those points of the ~ plane where there are poles in the function 
co(.)([1, §125]). Depending on the form of the region D ÷, this solution, and consequently the potentials 
~p(.) and qJ(.), can contain one or two complex or real arbitrary constants. If D ÷ is a bounded 
region, there are no poles in the function off.) in the region A +. If, however, the region D ÷ is 
unbounded, the function w(.)may have a simple pole in A ÷ or on A. In the general case F(.) = -F0(- ) 
+ G('), where G(') is a certain rational function, and F0(. ) is an integral of the Cauchy type with density 

f[o~(.)]: 
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[ I ! ~ /  ( ~ -  O(x ) ) ( x -  ~) I d.x'] d~ d't: + 
Z~I ah th 

+ 2rtil ,a,I U2(x)Itb T~/ (~-o)(x))(x-;) 
21rci,~,U,(x~)[l ! ~'r- co(x,___~__~x)) x~-~--~ ] d~-  

All inner integrals can be calculated by Cauchy's formula (taking into account the equality 1/~ = x when 
x E A ) .  

It is important that to(-) is a rational function. Only a rational function defined in the region A + can 
naturally be continued analytically through the unit circle onto the entire complex plane (with the 
exception, perhaps:, of a finite number of points where it has poles). Here, the conjugation method 
assumes that the function ~0(') can be determined in the region A- by different methods. Note, likewise, 
that, if the region D ÷ is unbounded, then occasionally it is more convenient to use mapping of the exterior 
of the unit circle A-- on D ÷. 

Complex potentials for an elastic plane, half-plane and circle with a defect along a smooth arc a b  

can be obtained as special cases of formulae (2.2). 
For the complete plane, ~0(') = P and ~0(') = Q, where P and Q are arbitrary complex constants. 

In this case, in formulae (2.2), to(~) is replaced by the variable z (we recall that the complete plane is 
not mapped conformally onto any bounded region [4]). If the values of functions tp~(.) and $1(') are 
specified at a certain point z0, then the constants P and Q are defined uniquely. For example, if 
z 0 = 0% then e = q~l(~o) and Q = @~(oo). 

In the case of the. half-plane Im z < 0 

o~(~) = i ~ + I 

If the functions q:<') and @(') are continued continuously to all points of the real axis, including the 
point at infinity, then 

2 ~ i  ,a, tt, ~ - z zrci ab ~ ~ - z d z  - 

1 ~ I z 

,'m "~ - z 2 ~ i  ~b x - z 

2gi ,m x - z 
(2.6) 

The arbitrary comptex constant R is uniquely defined if the value of one of the functions qo(.) or @(') 
is specified at a certain point z0 of the half-plane or real axis. 

Note that, if the half-plane has no defect, then qo(z) = R, @(z) = -R,  where R is an arbitrary complex 
constant. In this case qo(z) + ~(z) = 0 V ~ D ÷ tO L 

Complex potentizLls for a half-plane are constructed directly by the conjugation method in [3]. 
For a circle I zl < R 

Z/E o,b zh - - '  
' - 

• 9 4- d~ + iSz - T (2.8) 
2rti ,I, L ~ -- R -  / z  
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I !Ut(x){d ' t  In Jh - + U2(.Q ( ' c - b ) ( ~ b z - ~ R 2  - b R  2 
) d 'c+ 

V(z) = - ~ n / , ,  "~-z 2 i  ~ z  ----~b--z - R'2) 

+ U--~ ~ ---~ / ?--~_ R--T~ d~+ I U ~ J  d~+T (2.9) 
2hi t.xh z 2hi ab  xh  

where S and T are arbitrary real and complex constants. 
If a circle without a cut is considered, then tp(0) + 4(0) = 0 Re ~p'(0) = 0 and ~p(z) = iSz - T, 

t~(z) --- T, where S and T are arbitrary real and complex constants. 

3. INTEGRAL EQUATIONS OF FUNDAMENTAL 
BOUNDARY-VALUE PROBLEMS 

We will consider the first and second fundamental boundary-value problems for an elastic medium with 
a defect along the arc ab, where, on the sides of the cut, the stresses (non-self-balanced forces) or 
displacements (in integral form) are specified 

Ik .... ~cp( t )+(- I )" - ' ( tq~ ' ( t )+~(- i ) ) l  +- = J f ,~ (x )dx+ a, , ,  t ~ a b  (3.1) 
(11 

The constants Am define the stress (m = 1) and displacement (m =2) at point a of the arc. 
The first (second) fundamental boundary-value problem is reduced to the case when f~-(.) = fT(.) 

(f~-(') = f2(')). 
The theorem below follows directly from the lemma. 

Theorem.  T h e  first and second fundamental boundary-value problems for an elastic solid with a defect 
along the arc ab are equivalent to the integral equations. 

[k'"-t q)(m(t)) + (- i )  ''-t (m(t)q~'(o3(t))+ Rt(m(t)))] + + 

+l k"-~0(m(t)) + (-I)'"- ~ (oa(t)~p'(m(t)) + ~(to(t)))]- = 

m. I + - [f,, (x) + f,,, (x)]dz + 2A,,,, re(t) ~ ab 
,l(,)( l ) 

(3.2) 

where u~!t) = fT( t )  - f T ( t ) ,  /'/2(') is the required function (the first boundary-value problem) and 
u2(t) = f2(t) - f 2 ( t ) ,  u l ( ' )  is the required function (the second boundary-value problem). Here, ~(') and 
4(') are complex potentials of (2.2). 

On the left-hand sides of Eqs (3.2), the limit values of the complex potentials to the left and right 
on the defect are purposely not substituted, so long as the region D ÷ is not specified, it is impossible 
to write explicit expressions of the functions ~0(') and q%(.). Therefore, at first glance, Eqs (3.2) are 
not like integral equations. 

We will examine in greater detail the cases of a plane, a half-plane and a circle with a defect along 
ab. Everywhere, as in the formulation of the theorem, in the case of the first boundary-value problem 
(m = 1) ul ( t )  = fT( t )  - f+l( t) ,  u2(') is the required function, and in the case of the second boundary- 
value problem u2(t) = f2(t) -f2(t),  ul(') is the required function. 

For the complete plane 

k .... t d~ d~-  (-I)"-t  d E  • x - t  
I v 2 ( x ) J  ct'c+ (-I)'"-____...~' I v , ( ' t )  _ _ ~ = I U, ('c) I g _ t ni at, xh ~ - ?  ~ - t ni ,,t, ,t, gi  ,tb 

= ~ [f,,*,(x)+f,7,('c)ldx+2(A,,, - k ' - t P - ( - I ) " ' - ~ O ) ,  t ~ ab (3.3) 
111 

Integral equations (3.3) are complete analogues of Eqs (I.78) and (1.81) from [2]. An important 
difference is that the Kernels of Eqs (1.78) and (1.81) contain first-order singularities, while the Kernels 
of Eqs (3.3) contain logarithmic-type singularities. 

The boundary integral equations, including equations with logarithmic singularities in the Kernels, 
to which problems of elasticity theory can be reduced, were covered in review [9]. Note that the 
logarithmic singularities of the Kernels of Eqs (3.3) are contained in integrals with a Cauchy Kernels 
with a variable limit. Equations with such Kernels were studied earlier in [6, 7]. 
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In the case of a half-plane Im z < 0 

--'., <+>r,"-', <-,)'-' 
xi ,,#, L xJ' xb ( X - t) . J 

, } <-,,'-' 
+ ' ' : I  (-I) m-i '~- t  k m-I'c-t  d~- I U2(x) t - ( d ' ~ =  

rot ,u, ~-S 7 ~ -  t ni ,a, x - t 

= f  + + - [f,,(x) fnt('O]dx+2A,,+2(l-m)(k+l)R, t eab  
d:tl 

For the set Izl < R 

7s<, ,<+A .... ,s 
T:t ,,h L +h +b { - R 2 / 

- '(-I) "-'(x~+t?)(g?-2R2)+R2(~t-'ct+2R2) ~R2] 
(X[_R2)2 +(- I )  "-I d'c+ 

' I dE (_1),,_1, d~ _km_l ~t ] +---: I u2(t) t~"-' ~ 
rtt ,,b k 31, ~ - R2 / t to ~ - t " ~  "d'¢ + 

+-~,!, U--~ (-1) ''-I ! -t~_? kin_ 1 ~-R21t'C-t k,,_ l d'~+ 

- - - [  tR2 (z-b)(.cb~_~e2_bR 2) !R2]  ( I )  ''-~ 
4 ~i ,,h~ U2(X) 7(~t- 'R2 ) ~ - - R ~  ) ~ af t= 

= ~ [ J ; + ( x ) + f m ( x ) ] d X + 2 A . , + 2 ( m - l ) ( k + l ) ( T - i S t ) .  t e a b  

(3.4) 

(3.5) 

4. THE B U B N O V - G A L E R K I N  METHOD 

We will discuss some results, obtained by numerical solution using the Bubnov-Galerkin method of 
integral equations (IEs), of the fundamental boundary-value problems for elastic solids with defects. 

First of all, we note that the logarithmic singularities in the Kernels of the IEs are contained in Cauchy- 
type integrals with variable limits. As follows from the general theory of IEs with a logarithmic singularity 
in the Kernels [6, 7], it is easy to change to equivalent singular IEs with a Cauchy Kernel in relation to 
the primitive functions urn('). Such a transformation of the IEs reduces to integration by parts in an 
integral with a logarithmic Kernel 

I ,,(x)f %-~zdT= I w(~)d____..~ wCb= f u,(z)dx 
,n, +h ,,#, ~ - z ' ,+~ 

rather than to differentiation of both sides of the IEs. 
We shall confine ourselves to the case where defects of an elastic solid are situated along segments 

of the real axis of the complex plane. By replacing the variables it is always possible to change from an 
arbitrary segment ;:o a standard segment [-1,  + 1](then it is easier to carry out calculations and compare 
the results of calculation with various initial data). 

For IEs with logarithmic singularities in the Kernel, the Bubnov-Galerkin method consists of the 
following. We represent the approximate solution of the IE 

+!i [ l + r ( t ' x ) ]  dt=g(x)" 
_ tp(t) In ] t_x]  x e [ - l , + l ]  
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in the form 

I N 
q)(t) = q)iv(t)= ~ i~__l aj~_l(t) 

Then, for unknown a] ( j  = 1, . . . ,  N) we obtain a system of linear algebraic equations 

N 
Y, aj(ski +rk))=gk, k = l  ..... N 
i=1 

s t i =  k = j = l :  g21n2; k = j ~ l :  -~- ;  k ~ j : O  

÷1 +1 

-I-I 4 1 - t  2 ~/I-x 2 

+1 

- ~1 - x  2 

All the integrals are easily evaluated approximately by Hermite's quadrature formula. 
For singular IEs with a Cauchy Kernel, depending on the index, i.e. on the class of required solutions, 

other weight functions and other systems of orthogonal polynomials can be selected. The theoretical 
basis of the method is given, for example, in [8]. 

Note that, for the approximate solution of IEs with logarithmic Kernels by the Bubnov-Galerkin 
method, the values of the required function at the ends of a segment cannot be calculated, even if there 
are no singularities at these points for the solution. For equivalent equations with a Cauchy Kernel, 
values of the solution at the end points can be found in principle, but in all of the cases examined below, 
on approaching the points __. 1, the graphs of approximate solution fall away steeply. 

The number N of the unknown coefficients of the expansion of the approximate solution, for which 
the numerical algorithm is stable, depends on the closeness of the defect to the boundary of the region 
or examined to the singular point, or on the relative position of individual parts of the defect (if the 
defect consists of several segments). It turned out that, for IEs with a Cauchy Kernel, the Bubnov- 
Galerkin method is more stable. 

Figure 1 shows graphs of the approximate solutions of IEs with a logarithmic singularity in the Kernel 
(a) and with a Cauchy Kernel (b) of the first boundary-value problem for a circle [zl > R with a defect 
along a segment of the real axis (the length of the defect increases in the direction from curve 1 to 
curve 3). In view of the symmetry, only the region t I> 0 is shown. Similar graphs were obtained for a 
complete plane and for a half-plane Re z > 0 with the same defect. A self-balanced load was specified 
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on the sides of the cut, for which the right-hand side of the IE became equal to i(b - t ) ( t -  a). The  range 
of the graphs depends only on the length of the defect if the solution is stable. In the case of a circle, 
the results of calculation are not influenced by a defect whether or not it is symmetrical about the origin 
of coordinates. However, when its ends approach points of the circumference, the corresponding values 
of the solution increase with out limit. 

The results of a rmmerical solution of some of the IEs examined by means of mechanical quadratures 
are given in [3]. 

Figure 2 shows a graph of the approximate solution of IEs of the first boundary-value problem for 
+ 

region D bounded by a cardioid, when a crack emerges at the boundary (curve 2 corresponds to greater 
defect length). The; unique correspondence between the cardioid in the z plane and the unit circle in 
the ~ plane is stipulated by the function z = ~ + ~2/2, and here the cut along a segment of the real axis 
is converted into a cut along a segment of the axis. Here,  two versions of the calculation algorithm are 
possible: either directly for the initial equation in the z plane or for the transformed equation in the 
plane (the inverse raapping is easy). Note that the graph of the solution is asymmetrical. When the defect 
approaches the inversion point ( -0 .5 ,  0), the stability of the algorithm is lost. 

When the defect of the elastic solid consists of several segments, it is necessary, on each of them 
individually, to expand the required function in terms of Chebyshev polynomials. Then, the total number 
of unknown quantities in the system of linear algebraic equations increases in proportion to the number 
of defect sections. Figure 3 shows graphs of the solution of the equation with a logarithmic singularity 
in its kernel for the case of a half-plane Re z > 0, where the beginning of one defect and the end of 
another coincide (curve 2 corresponds to greater defect length). However, if the defects have no common 
point, the graphs cf  the solution of the equation, as expected, are identical to the graphs in Fig. l(a). 

In all the graphs, the values of the function u2(') are plotted along the ordinate axis, from which the 
displacements of points of the defect are calculated. 
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